Sparse Signals Reconstruction via Adaptive Iterative Greedy Algorithm

نویسندگان

  • Ahmed Aziz
  • Ahmed Salim
  • Walid Osamy
چکیده

Compressive sensing(CS) is an emerging research field that has applications in signal processing, error correction, medical imaging, seismology, and many more other areas. CS promises to efficiently reconstruct a sparse signal vector via a much smaller number of linear measurements than its dimension. In order to improve CS reconstruction performance, this paper present a novel reconstruction greedy algorithm called the Enhanced Orthogonal Matching Pursuit (E-OMP). E-OMP falls into the general category of Two Stage Thresholding(TST)-type algorithms where it consists of consecutive forward and backward stages. During the forward stage, E-OMP depends on solving the least square problem to select columns from the measurement matrix. Furthermore, E-OMP uses a simple backtracking step to detect the previous chosen columns accuracy and then remove the false columns at each time. From simulations it is observed that E-OMP improve the reconstruction performance better than Orthogonal Matching Pursuit (OMP) and Regularized OMP (ROMP).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Regularized Adaptive Matching Pursuit Algorithm for Linear Frequency Modulated Signal Detection Based on Compressive Sensing

Compressive Sensing (CS) is a novel signal sampling theory under the condition that the signal is sparse or compressible. It has the ability of compressing a signal during the process of sampling. Reconstruction algorithm is one of the key parts in compressive sensing. We propose a novel iterative greedy algorithm for reconstructing sparse signals, called Modified Regularized Adaptive Matching ...

متن کامل

Maximum Correntropy Adaptive Filtering Approach for Robust Compressive Sensing Reconstruction

Robust compressive sensing(CS) reconstruction has become an attractive research topic in recent years. Robust CS aims to reconstruct the sparse signals under non-Gaussian(i.e. heavy tailed) noises where traditional CS reconstruction algorithms may perform very poorly due to utilizing l2 norm of the residual vector in optimization. Most of existing robust CS reconstruction algorithms are based o...

متن کامل

Greedy Sparse Signal Reconstruction Using Matching Pursuit Based on Hope-tree

The reconstruction of sparse signals requires the solution of an `0-norm minimization problem in Compressed Sensing. Previous research has focused on the investigation of a single candidate to identify the support (index of nonzero elements) of a sparse signal. To ensure that the optimal candidate can be obtained in each iteration, we propose here an iterative greedy reconstruction algorithm (G...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Greedy signal recovery and uncertainty principles

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014